In a nut mixture, there are \(1\frac{\mathrm{1} }{\mathrm{8}}\) pounds of almonds, \(2\frac{\mathrm{3} }{\mathrm{4}}\) pounds of cashews, and \(3\frac{\mathrm{1} }{\mathrm{3}}\) pounds of peanuts. The total weight of the mixture is _________.
\(7\frac{\mathrm{5} }{\mathrm{24}}\) pounds.
\(6\frac{\mathrm{1} }{\mathrm{3}}\) pounds.
\(6\frac{\mathrm{23} }{\mathrm{24}}\) pounds.
\(7\frac{\mathrm{7} }{\mathrm{12}}\) pounds.
Detailed Explanation
\(1\frac{\mathrm{1} }{\mathrm{8}}\) + \(2\frac{\mathrm{3} }{\mathrm{4}}\) + \(3\frac{\mathrm{1} }{\mathrm{3}}\) = \(\frac{\mathrm{9} }{\mathrm{8}}\) + \(\frac{\mathrm{11} }{\mathrm{4}}\) + \(\frac{\mathrm{10} }{\mathrm{3}}\) = \(\frac{\mathrm{27} }{\mathrm{24}}\) + \(\frac{\mathrm{66} }{\mathrm{24}}\) + \(\frac{\mathrm{80} }{\mathrm{24}}\) = \(\frac{\mathrm{173} }{\mathrm{24}}\) = \(7\frac{\mathrm{5} }{\mathrm{24}}\) pounds.
Take more free practice tests for other ASVAB topics with our ASVAB practice test now!