A bread recipe calls for \( 3\frac{\mathrm{1} }{\mathrm{4}} \) cups of flour. If you only have \( 2 \frac{\mathrm{1} }{\mathrm{8}}\) cups, how much more flour is needed?
\(1\frac{\mathrm{1} }{\mathrm{8}} \)
\(1\frac{\mathrm{1} }{\mathrm{4}} \)
\(1\frac{\mathrm{3} }{\mathrm{8}} \)
\(1\frac{\mathrm{3} }{\mathrm{4}} \)
Detailed Explanation
1. Convert to improper fractions:
\(3\frac{\mathrm{1} }{\mathrm{4}} \) cups=\( 3 + \frac{\mathrm{1} }{\mathrm{4}}\) = \(\frac{\mathrm{13} }{\mathrm{4}}\) cups.
\(2 \frac{\mathrm{1} }{\mathrm{8}}\) cups= \(2 + \frac{\mathrm{1} }{\mathrm{8}}\) = \(\frac{\mathrm{17}}{\mathrm{8}}\) cups.
2. To determine the extra flour needed, subtract what you have from what’s required:
\(3\frac{\mathrm{1} }{\mathrm{4}} - 2 \frac{\mathrm{1} }{\mathrm{8}}\) = \(\frac{\mathrm{13} }{\mathrm{4}} - \frac{\mathrm{17} }{\mathrm{8}}\) = \(\frac{\mathrm{9} }{\mathrm{8}} = 1 \frac{\mathrm{1} }{\mathrm{8}}\).
Take more free practice tests for other ASVAB topics with our ASVAB practice test now!